Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Environ Sci Pollut Res Int ; 29(5): 6491-6510, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1375677

ABSTRACT

Air pollution, particularly in urban areas, puts human health in danger and has adverse impacts on the built environment. It can accelerate the natural corrosion rate of cultural heritages and monuments, leading to premature aging and lowering their aesthetic value. Globally, at the beginning of 2020, to tackle the spread of novel COVID-19, the lockdown was enforced in the most hard-hit countries. Therefore, this study assesses, as a first time, the plausible benefits of traffic and urban mobility reductions on the natural process of deterioration of materials during COVID-19 lockdown in twenty-four major cities on five continents. The potential risk is estimated based on exceeding the tolerable degradation limits for each material. The notable impact of COVID-19 mobility restrictions on air quality was evidenced in 2020 compared to 2019. The introduced mobility restrictions in 2020 could decrease the surface recession rate of materials. Extremely randomized trees analysis showed that PM10 was the main influencing factor for corrosion of portland, copper, cast bronze, and carbon steel with a relative importance of 0.60, 0.32, 0.90, and 0.64, respectively, while SO2 and HNO3 were mainly responsible for corrosion of sandstone and zinc with a relative importance of 0.60 and 0.40, respectively. The globally adverse governed meteorological conditions in 2020 could not positively influence the movement restrictions around the world in air quality improvements. Our findings can highlight the need for additional policies and measures for reducing ambient pollution in cities and the proximity of sensitive cultural heritage to avoid further damage.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollution/analysis , Air Pollution/prevention & control , Cities , Communicable Disease Control , Corrosion , Environmental Monitoring , Humans , Particulate Matter/analysis , SARS-CoV-2
2.
ACS Biomater Sci Eng ; 6(9): 4858-4861, 2020 09 14.
Article in English | MEDLINE | ID: covidwho-841401

ABSTRACT

In this letter, we report the ability of the nanostructured aluminum Al 6063 alloy surfaces to inactivate the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). There was no recoverable viable virus after 6 h of exposure to the nanostructured surface, elucidating a 5-log reduction compared to a flat Al 6063 surface. The nanostructured surfaces were fabricated using wet-etching techniques which generated nanotextured, randomly aligned ridges approximately 23 nm wide on the Al 6063 alloy surfaces. In addition to the excellent mechanical resilience properties previously shown, the etched surfaces have also demonstrated superior corrosion resistance compared to the control surfaces. Such nanostructured surfaces have the potential to be used in healthcare environment such as hospitals and public spaces to reduce the surface transmission of SARS-CoV-2 and combat COVID-19.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Microbial Viability/drug effects , Nanostructures/chemistry , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Alloys/chemistry , Aluminum/chemistry , Aluminum/pharmacology , Corrosion , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL